The views, information, or opinions expressed in the Industry News RSS feed belong solely to the author and do not necessarily represent those of IDEX Health & Science and its employees.

    Low-cost rapid prototyping of glass microfluidic devices using a micromilling technique

    Article obtained from Springer RSS Feed.


    A method is proposed for rapid prototyping of glass microfluidic devices utilizing a commercial micromilling machine. In the proposed approach, micromilling is performed with the glass substrates immersed in cool water, which could efficiently remove debris and increase the life of milling tools. We also investigate the effects of spindle speed, feed rate, cutting depth, cooling mode, and tool type on finished channel geometries, bottom surface roughness, and burring along the channel sides. It was found that low cutting depths, high spindle speeds and low feed rate produce smoother channels. Several functional microfluidic devices were demonstrated with this rapid prototyping method. The results confirm that the proposed micromilling technique represents a viable solution for the rapid and economic fabrication of glass-based microfluidic chips. We believe that this method will greatly improve the accessibility of glass microfluidic devices to researchers.

    Jul, 21 2018 |

    IDEX Health & Science is the global authority in fluidics and optics, bringing to life advanced optofluidic technologies with our products, people, and engineering expertise. Intelligent solutions for life.