Here we have provided comprehensive lists of commonly asked questions regarding our scientific cameras. This information is designed to support your inquiries, but if you don’t find the answers you are looking for we encourage you to contact us for further assistance.
Please use the sort buttons in the left navigation to navigate between questions and answers that are specific to Optical Imaging Systems, Optical Filters, Fluidics, Microfluidics, our Webstore and Engineering Partnership.
Interline CCDs use part of each pixel to collect light, and part of each pixel to store and move charge. The storage area has a metal mask to prevent corruption of the image during readout. New CCDs have a microlens over each pixel to focus incoming light onto the photodiode portion of the pixel so that light is not lost landing on the metal masks. Because only part of the pixel is used to collect light, the full well capacity of interline CCDs is typically lower than comparably sized full frame pixels. Interline transfer CCDs shutter the image by moving the charge from the photodiode to the storage diode side of the pixel. As a result, interline exposures can potentially be very short. For FLI cameras, interline exposure times can be as low as 30 microseconds (as opposed to about 30 milliseconds for an electromechanical shutter). Usually interline CCDs are used without electromechanical shutters. However, it is complicated to take a dark image without a shutter unless you have some way of keeping the camera in a 100% dark environment. Full frame sensors use 100% of each pixel to collect, store, and transfer charge. They require an electromechanical shutter unless the camera is going to be used in a 100% dark environment. Full frame devices typically have higher full well capacities and higher quantum efficiencies than interline sensors.