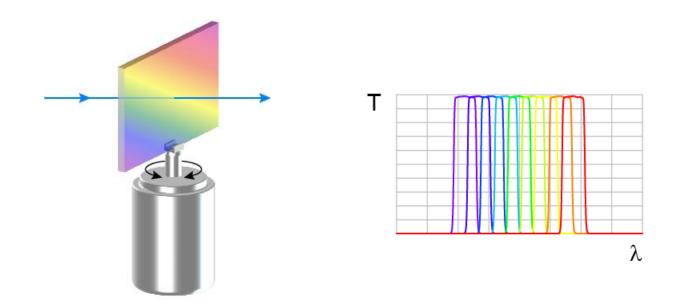


Optical Filters: Tunable Filters

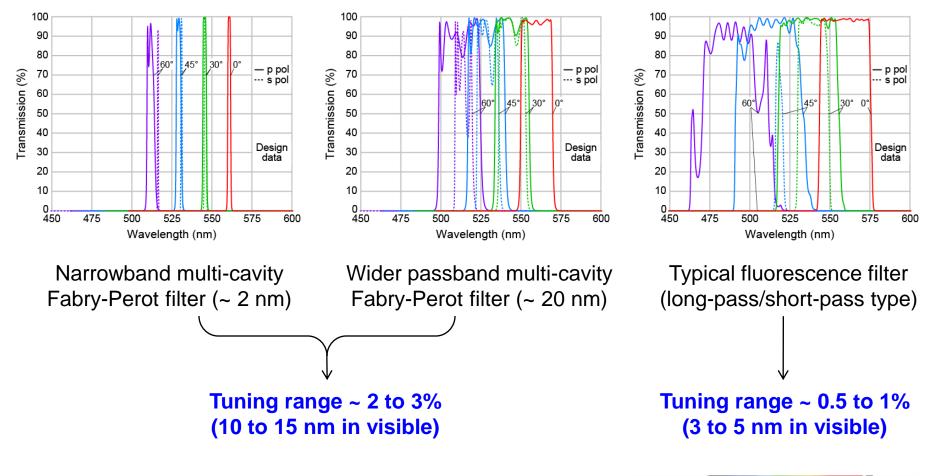

Turan Erdogan, PhD (CTO and Co-founder) Semrock, A Unit of IDEX Corporation

May 31, 2011

www.semrock.com

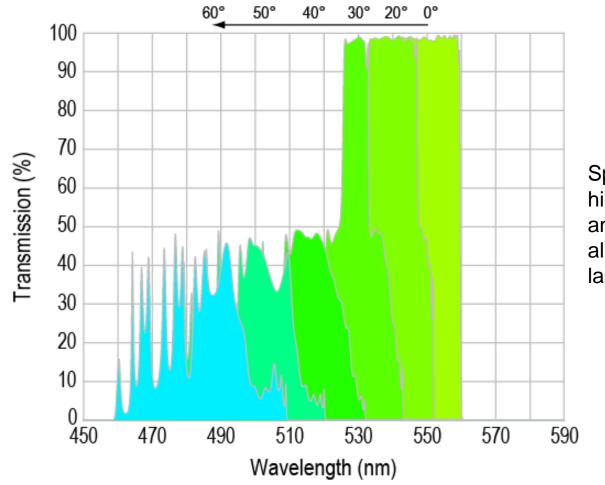
Introducing VersaChrome[®]

- Semrock has now developed a revolutionary new optical filter technology
 - Thin-film filters tunable over a wide range of wavelengths by adjusting the angle of incidence with essentially no change in spectral performance*



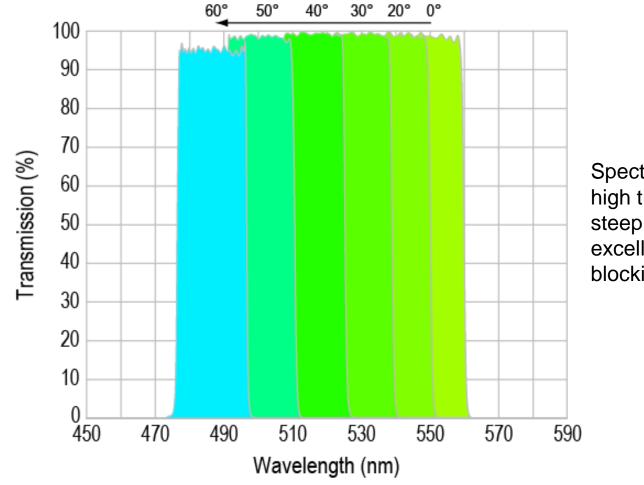
* Patent pending

Tuning range for bandpass filters is very limited


 Polarization splitting of the edges causes the spectrum for unpolarized light to "fall apart" at higher angle of incidence (AOI) values

Tuning range for bandpass filters is very limited

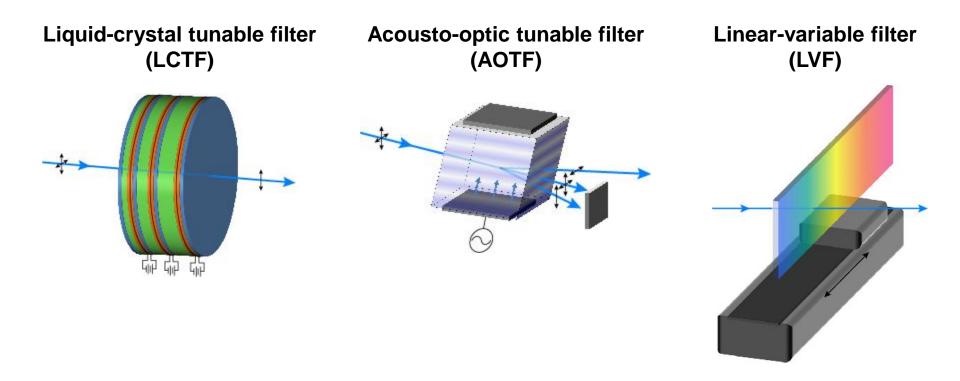
 Spectrum of a bandpass fluorescence filter for unpolarized light as it is angle-tuned from 0° to 60°



Spectrum becomes highly distorted even at angles of 20° to 30° and almost unusable for larger angles

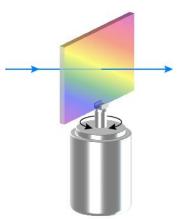
Tuning range for VersaChrome – 12%!

 Spectrum of a Semrock VersaChrome filter for unpolarized light as it is angle-tuned from 0° to 60°

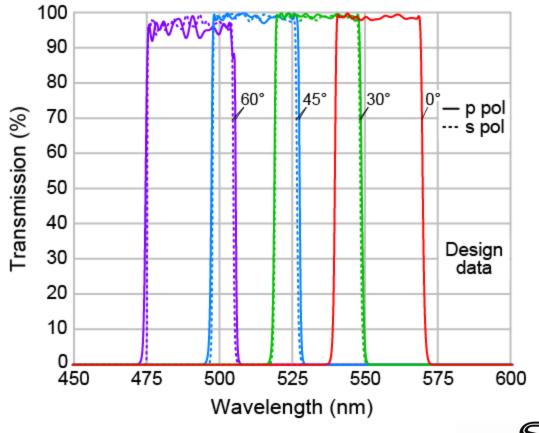


Spectrum maintains high transmission, steep edges, and excellent out-of-band blocking even at 60°!

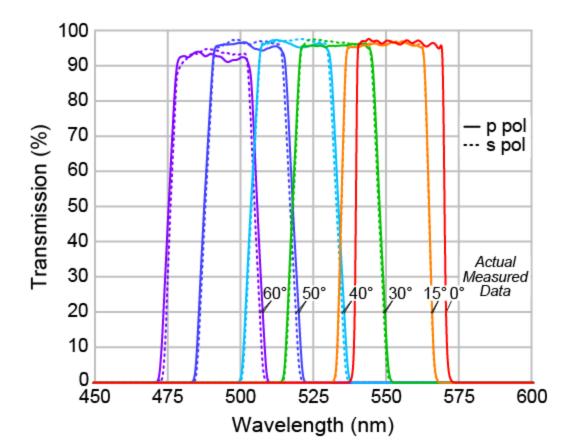
Tunable filters that transmit a 2-D imaging beam

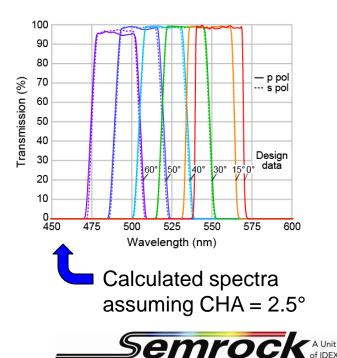

 Variety of tunable optical filter technologies, but all compromise at least some critical performance characteristics

Comparison of tunable filter technologies


Property	Liquid- crystal	Acousto- optic	Linear- variable	Angle-tuned thin-film	Semrock VersaChrome
High passband transmission	H	0	+	+	÷
"Top-hat" passband shape	-	-	0	+	H
Steep spectral edges	H	E.	H	+	E .
High out-of-band blocking	-		+	+	÷
Constant bandwidth over full wavelength range	-	-	+	0	+
Adjustable bandwidth	-	-	÷	-	÷
Wide tuning range	÷	÷	+		0
Arbitrary wavelength access	+	+	+	+	+
Fast tuning speed (random access)	-	H	E.	+	+
Two-dimensional imaging capability	+	-	0	+	+
Excellent imaging Modulation Transfer Function (MTF)	0	0	+	+	+
Large aperture	+	ł	0	+	+
Polarization insensitive	ł	ł	H	-	÷
Wide angular field of view	+	-	-		•
High Laser Damage Threshold (LDT)	ł	+	÷	+	Ŧ
High environmental durability/reliability	+	+	+	+	+
Minimal physical thickness	-	-	+	0	0
Low power consumption	0	+	0	о	0

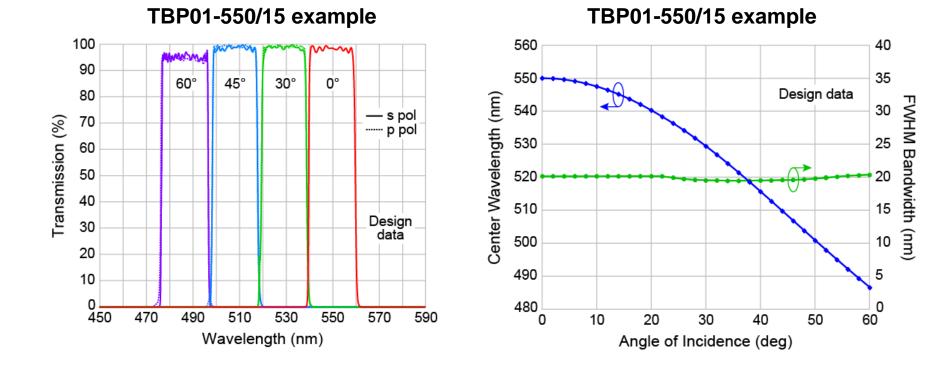
Why are VersaChrome filters so unique?


- At the heart of this invention is Semrock's discovery of a way to make steep edge filters at very high angles of incidence with essentially no polarization splitting and nearly equal edge steepness values for both polarizations
- And, remarkably, these properties maintain over a very wide range of angles!



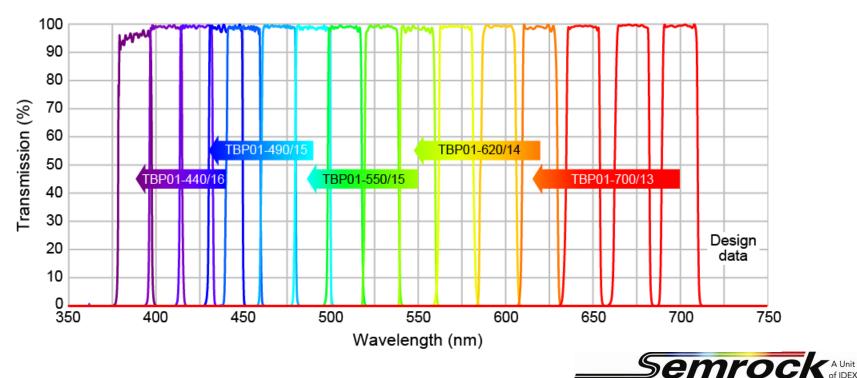
Why are VersaChrome filters so unique?

• And it really works! Measured data of actual (custom) VersaChrome filter:



Note the apparent reduction in the edge steepness at higher angles results from the lack of collimation (i.e. non-zero Cone Half Angle or CHA) of the measurement beam (here it was ~ 2.5°)

VersaChrome catalog tunable bandpass filters


- Center wavelength tuning range > 12% (50 80 nm in visible region)
- *n_{eff}* ~ 1.85
- 20 nm full-width-half-maximum (FWHM) across the full tuning range

First standard catalog VersaChrome filters – 20 nm FWHM

Just 5 VersaChrome filters cover the entire visible wavelength spectrum!

Tunable Color Range	CWL Range 60° – 0°	Average Transmission / Bandwidth	Size (L x W x H)	Part Number	Price
	390 – 440 nm	> 90% over 16 nm	25.2 x 35.6 x 2.0 mm	TBP01-440/16-25x36	\$645
	440 – 490 nm	> 90% over 15 nm	25.2 x 35.6 x 2.0 mm	TBP01-490/15-25x36	\$645
	490 – 550 nm	> 90% over 15 nm	25.2 x 35.6 x 2.0 mm	TBP01-550/15-25x36	\$645
	550 – 620 nm	> 90% over 14 nm	25.2 x 35.6 x 2.0 mm	TBP01-620/14-25x36	\$645
	620 – 700 nm	> 90% over 13 nm	25.2 x 35.6 x 2.0 mm	TBP01-700/13-25x36	\$645

Applications for tunable filter "systems"

Tunable light sources

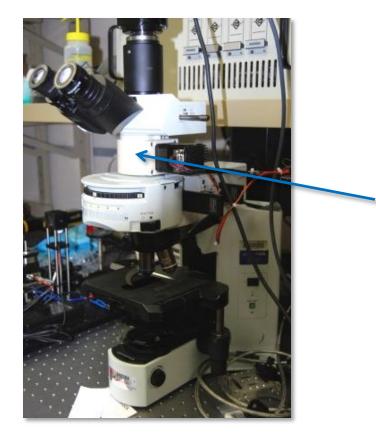
- CCD, CMOS, and other sensor or detector calibration
- Photometric, radiometric, and colorimetric calibration and testing of optical systems
- LCD display characterization
- Fluorescence microscopy
- Laboratory/OEM applications

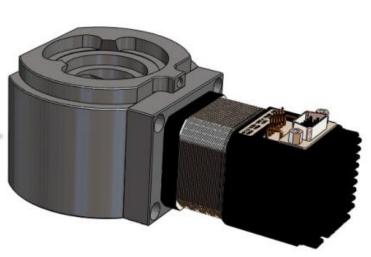
Spectral imaging systems

- Drug discovery & safety testing
- Research biological microscopy
- Microplate readers
- Plant genomics
- Forensic analysis
- Forgery detection
- Environmental monitoring
- Geological sample analysis
- Gemology
- Semiconductor process/quality control
- Microelectronic & photovoltaic production
- Pulp and paper manufacturing
- Textile production
- Food safety & quality
- Waste recycling & sorting

FH1 holder for VersaChrome (and other filters)

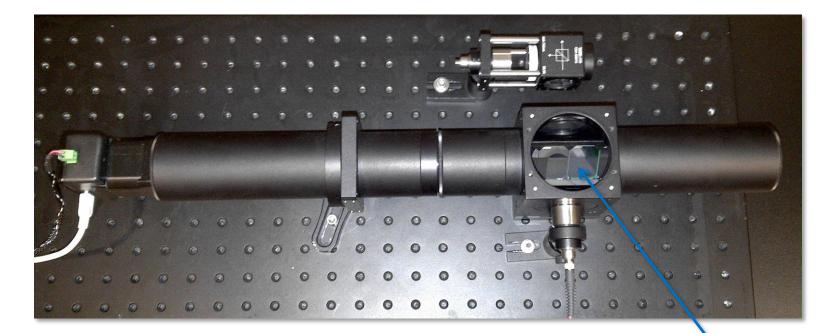
- Easily hold a VersaChrome filter and mount it to a manual or motorized rotational device
 - Simple, low-cost stepper or DC motor
 - Galvanometer scanner (galvo)
 - Manual or motorized rotation stage




- Also a simple, unobtrusive holder for any 25 mm x 36 mm dichroic (for thickness 1 – 2 mm)
 - 1 mm thick dichroic coating is precisely positioned over center of mount
 - 2 mm thick filter is itself symmetrically positioned over center of mount

VersaChrome single-filter implementation

 Example of a simple module for tuning a single emission filter in an Olympus BX fluorescence microscope platform


Semrock (prototype)

- For microscope imaging
- Built for demonstration only

VersaChrome multi-filter implementation

 Example of a simple module for tuning up to 5 emission filters in the imaging path of an instrument or fluorescence microscope

Semrock (prototype)

- For imaging (> 20 mm CA)
- Built for demonstration only

VersaChrome filters

More VersaChrome filter tuners

More examples of products that utilize VersaChrome tunable filters

AHF TuneBox LC-60

- Very fast (0 60° in 16 ms)
- Single filter
- Non-imaging (optical fiber or liquid light guide)

Sutter Instruments (prototype)

- Moderate speed
- Up to 5 filters
- Non-imaging (optical fiber or liquid light guide) or small aperture imaging applications

