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Coherence

• A measure of the correlation between the phases measured at different 
points on a wave

• Coherence is a property of the wave itself, but it is determined by the 
characteristics of the source

Coherent source: single stone 
thrown into a pond; the phases 
of the waves at points A and B 
are highly correlated.

Incoherent source: many 
random rain drops falling on a 
pond; the phases of the waves 
at points A and B are not at all 
correlated.
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Coherence – two basic types

• Temporal Coherence is a measure of the correlation of the phase of a 
light wave at different points along the direction of propagation – it tells 
how monochromatic a source is

• Spatial Coherence is a measure of the correlation of the phase of a light 
wave at different points transverse to the direction of propagation – it tells 
us how uniform the phase of the wavefront is

A good example of a 
temporally and spatially 
incoherent source:  an 
incandescent light bulb
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Coherence – how do you achieve it?

• An incoherent source can be filtered to produce coherent light, but you 
have to throw away most of the light!

• However, a laser naturally produces a lot of coherent light!
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Coherence – how do you measure it?

• Temporal coherence is characterized by the coherence length Lc

 Lc is the maximum separation of two points along the propagation direction at 
a fixed time such that the two points still have a well-defined phase 
relationship (and hence are able to produce interference fringes)

 For a source centered at wavelength λ and with a total spectral width Δλ, a 
good approximation is:
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Coherence – how do you measure it?

• Spatial coherence is characterized by the coherence width Wc

 Wc is the maximum separation of two points across the wavefront at a fixed 
time such that the two points still have a well-defined phase relationship (and 
hence are able to produce interference fringes)

 Wc can also be measured from the beam divergence; since the source 
behaves like a bunch of independent sources of aperture size Wc, then
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Combining 2 or more filters together

• Often it is desirable to combine two or more filters in sequence to…
 … increase the wavelength range of blocking, or

 … increase the blocking level at particular wavelength ranges

• Does “1 + 1 = 2” when filters are combined this way?

+ = ?
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Bandpass filter by combining LWP-SWP

• For incoherent light, the combination of two edge filters – an LWP 
(long-wave-pass) and an SWP (short-wave-pass) – “looks like” a single-
coating bandpass filter*
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• TIRF = Total Internal Reflection Fluorescence
• The TIR process redirects ALL of the laser excitation light back toward the 

camera, and therefore exceptional blocking by emission filters is critical

• Often 2 emission filters – spatially separated – are required to provide sufficient 
blocking of the laser excitation light

TIRF microscopy

Emitter Filter

Totally reflected
excitation light directed
back toward the camera

Result:  often 2 emission
filters are required for

sufficient contrast
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Multiphoton fluorescence microscopy

• A high-peak-intensity (but moderate 
average intensity) pulsed laser source 
is focused on the sample and raster-
scanned, just as in confocal microscopy

• With appropriate filters it is possible to 
exclude excitation light from the 
fluorescence signal and thus obtain a 
very high signal-to-noise ratio

• The result: very high resolution 3D 
imaging of dynamic processes in very 
thick, live samples

 Often it is desirable to use a fixed short-
wave-pass emitter for laser-blocking, in 
addition to an exchangeable bandpass 
emitter to isolate different fluorophores
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Combining filters for coherent light

• Because of multiple-path interference, the transmission of coherent light 
(e.g., a laser beam) through two filters is not simply the product of the 
individual transmissions (T ≠ T1*T2)
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(L is the separation between the two filters)
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Combining filters for coherent light

• Because of multiple-path interference, the transmission of coherent light 
(e.g., a laser beam) through two filters is not simply the product of the 
individual transmissions (T ≠ T1*T2)

Examples:

T1 = T2 = 90%

T1 = T2 = 10%

(L = 2 mm)
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Combining filters for incoherent light

• Because of averaging due to multiple-path interference, the transmission 
of incoherent light (e.g., fluorescence) through two filters is not simply 
the product of the individual transmissions (T ≠ T1*T2)
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Combining filters for incoherent light

• Because of averaging due to multiple-path interference, the transmission 
of incoherent light (e.g., fluorescence) through two filters is not simply 
the product of the individual transmissions (T ≠ T1*T2)

Examples:

T1 = T2 = 90%
so T = 81.82%

T1 = T2 = 10%
so T = 5.26%
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Combining filters for incoherent light – with loss

• Because of averaging due to multiple-path interference, the transmission 
of incoherent light (e.g., fluorescence) through two filters is not simply 
the product of the individual transmissions (T ≠ T1*T2)
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Combining filters for incoherent light – no loss

• For high values of transmission (> 80%) the product of the individual 
transmissions is approximately correct

• For very low transmission values (measured in OD), use the correct 
formula! (e.g., two OD 6 filters have a combined OD of 6.3, not 12!)
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Combining filters for incoherent light – with loss

• Adding even a little bit of loss between the two filters very rapidly cancels 
the multiple-path interference effects

• For very low transmission values (measured in OD), a little loss greatly 
increases the combined OD (10% loss makes the combined OD 11!)
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Tilting two filters with respect to one another

• An easy way to eliminate multiple reflections between two filters (and 
thus add loss) is to tilt them with respect to one another

• Multiple reflections can be completely eliminated if the filter separation is 
larger than the filter diameter for tilt angles θ of at least a few degrees
 Then transmission is given by the product of the individual values (T = T1*T2)



19

Tilting two filters with respect to one another

• An easy way to eliminate multiple reflections between two filters (and 
thus add loss) is to tilt them with respect to one another

• Multiple reflections can be completely eliminated if the filter separation S, 
diameter D, and tilt angle θ obey the relation below – in this case the 
transmission is given by the product of the individual values (T = T1*T2)

θ+θ
>

4tan2tan
DS
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Minimizing substrate autofluorescence

• Filters made from more than one coating can yield a different amount of 
substrate autofluorescence depending on how they are oriented

• For a LWP-SWP filter, the light should travel from the LWP to the SWP

Correct Orientation
• LWP first
• No autofluorescence 

leaks through the filter

Incorrect Orientation
• SWP first
• Autofluorescence can

leak through the filter
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Thank you!
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