

Optical Filters: Blocking

Turan Erdogan, PhD (CTO and Co-founder) Semrock, A Unit of IDEX Corporation

May 31, 2011

www.semrock.com

Working with Optical Density (OD)

$$OD = -log_{10}(T)$$
$$T = 10^{-OD}$$

OD = Optical Density

 $T = Transmission \ 0 \rightarrow 1$

Transmission	OD
1	0
0.5	0.3
0.25	0.6
0.2	0.7
0.125	0.9
0.1	1
0.05	1.3
0.025	1.6
0.02	1.7
0.0125	1.9
0.01	2
0.005	2.3
0.0025	2.6
0.002	2.7
0.00125	2.9
0.001	3

The "1" Rule :	<i>T</i> = 1	\rightarrow	OD = 0
The "× 2" Rule :	$T \times 2$	\rightarrow	OD-0.3
The "÷ 2" Rule :	<i>T</i> ÷2	\rightarrow	<i>OD</i> +0.3
The "×10" Rule :	<i>T</i> ×10	\rightarrow	OD-1
The "÷10" Rule :	<i>T</i> ÷10	\rightarrow	<i>OD</i> +1

How much blocking / optical density is enough?

 First, it is important to recognize that the actual optical density (at any given wavelength) is rarely as high as the design spectrum indicates

- This design spectrum indicates blocking of OD ~ 15
- Actual blocking is more likely OD ~ 8 – 10
- Could be even lower if there are observable "pinholes" or substantial defects in the mounting of the filter

So how much blocking is necessary?

• It depends on your instrument and your sample conditions!

- In this example the fluorophore concentration is high enough for the Signal to be ~ 800X larger than both Excitation Light Noise (unblocked light from the source) and Autofluorescence Noise
- Note that almost all of the Signal comes from the passband of the emitter (500 – 550 nm), whereas the Noise is integrated over a very wide range of wavelengths covering the full range of the detector (out to even 1100 nm)

Typical filter blocking (from previous example)

 The design spectra below show typical blocking levels that are optimal for most fluorescence imaging applications

FF01-482/18 (Exciter) and FF01-525/45 (Emitter)

- Exciter blocking > OD 6 UV – 700 nm
- >> OD 6 in Em passband
- > OD 4 700 925 nm
- > OD 2 925 1100 nm
- Emitter blocking
 - > OD 4 UV to Ex passband
 - >> OD 6 in Ex passband
 - > OD 6 to 700 nm
 - > OD 5 700 925 nm

Optical Density (OD)

More blocking needed for very low signal levels

- In this example we assume the same light source and filters, but a much lower fluorophore (and autofluorescence) concentration
- The Signal is now actually below the Excitation Light Noise – more blocking is needed for this case!

Exciter-emitter overlap also critical for low signal

- When the excitation filter and the emission filter have too much overlap, the excitation noise peak can rival or exceed the Signal in the emission band
- Overlap is especially important for low Signal levels (that is, low fluorophore concentration)
- For most cases, a combined OD of 7 – 8 is generally sufficient (guaranteed blocking for each filter of OD 3.5 – 4 at the actual crossover point)

Exciter-emitter overlap also critical for low signal

- When the excitation filter and the emission filter have too much overlap, the excitation noise peak can rival or exceed the Signal in the emission band
- Overlap is especially important for low Signal levels (that is, low fluorophore concentration)
- For most cases, a combined OD of 7 – 8 is generally sufficient (guaranteed blocking for each filter of OD 3.5 – 4 at the actual crossover point)

Thank you!

