Rapid Prototype Manifolds Product Data Sheet

RAPID RESPONSE PROGRAM

D-shaped and O-shaped channel types available

Results similar to acrylic for cleaner and base solutions

Engineered for easy transition to our full production process

Learn more at www.idex-hs.com

Rapid Prototyping Manifolds help accelerate your time to market by providing faster manifold delivery and enabling rapid design iterations. In this process, we work to optimize the form, fit, function, and manufacturability of your fluidic path by collaborating early in a project.

The Technology

Manifolds are formed by curing a photopolymer resin on a build surface. A laser beam traces the part geometry and solidifies the resin. The build surface, immersed in a vat of this resin, is lowered by a fraction of an inch to build the next layer. This additive manufacturing process is called Stereolithography (SLA). Use this sheet to learn more about our capability. Contact a fluidic engineering specialist for additional support and questions.

Material Comparison

Properties	Rapid Prototype Manifold	Traditional Bonded Acrylic Manifold	
Composition	Photopolymer	Acrylic (PMMA)	
Color	Clear	Clear	
Tensile Strength	52 MPa (7,500 psi)	77 MPa (11,250 psi)	
Tensile Modulus	2,560 MPa (371,000 psi)	3,100 MPa (450,000 psi)	
Elongation at Break	6%	6%	
Flexural Strength	83 MPa (12,000 psi)	105 MPa (15,250 psi)	
Flexural Modulus	2,330 MPa (338,000 psi)	3,275 MPa (475,000 psi)	
Impact Strength (Notched Izod)	46 J/m (0.86 ft-lb)/in	20 J/m (0.38 ft-lb)/in	
Heat Distortion Temperature (HDT) @ 0.45 MPa (66 psi) ASTM D468	51°C (124°F)	110°C (230°F)	
Heat Distortion Temperature (HDT) @ 1.82 MPa (264 psi) ASTM D468	50°C (122°F)	95°C (203°F)	
Hardness, Shore D	85	98	

Design Considerations

All Rapid Prototype Manifold designs are engineered for easy transition to our full production processes. This is done to minimize differences in the flow path and geometry. This enables faster scale-up for final material and part builds using full-scale production methods.

Feature Comparison

Characteristics	Rapid Prototype Manifold	Traditional Bonded Acrylic Manifold
Channel Types: D-shaped, O-shaped	Yes	Yes
Minimum Channel ID	0.030"	0.020"
External Feature Tolerances	+/-0.005 or better ¹	+/-0.005 or better ¹
Surface Roughness of Channel	40 microinch	16 microinch
External Surface Finish	<20 microinch	<20 microinch
Maximum Manifold Size	$15 \times 15 \times 4$ inches ²	$24 \times 24 \times 4$ inches ²
Transparency	Yes	Yes
Optical Clarity — External	Yes	Yes
Optical Clarity — Internal	No	Yes
Secondary Operations, Special Features	Yes	Yes

 $^{\rm 1}{\rm Dependent}$ upon design and needs

²Nearly all applications fall within this range. Consult our experts for unique needs The Rapid Prototype Manifold process produces prototypes intended for initial design analysis. These parts are not warranted for production use as the material used has inherent limitations in terms of chemical compatibility, mechanical strength, working temperature, pH and feature resolution. We will make the best effort to meet all feature specifications provided they are within the limitations of our technology. Specific dimensions, surface finishes, system pressures, etc. should be discussed with our engineers.

Chemical Compatibility: 21-Day Soak Test

	Rapid Pr Manifold	ototype	Acrylic	
Test Solution	Result	Notes	Result	Notes
IPA (70%)	Fair	Some Swelling	Good	
Bleach (6%)	Good		Good	
Sodium Hydroxide	Good		Good	
Methanol (90%)	Poor	Swelling & Plasticization	Fair	Swelling
Ethanol (95.5%)	Poor	Swelling & Plasticization	Good	

Testing of materials used an extreme 21-day soak test method. The Rapid Prototype Manifold material has shown similar results to acrylic for cleaner and base solutions such as Isopropyl Alcohol, Bleach, and Sodium Hydroxide. These soak test results show the result of long-term exposure. Each application is different and exposure times and prototype life needs can vary. Send us your application requirements so specific compatibility items can be reviewed and discussed.

For ordering, technical support, and contact information please visit www.idex-hs.com